jump to navigation

Fraisse Amalgams as Limits November 5, 2009

Posted by dcorfield in Uncategorized.
trackback

Our very first post here spoke about the Fraïssé amalgam, a way of constructing a universal object out of a countable set of similar objects satisfying certain conditions. For example the amalgam of the set of finite graphs is the infinite random graph.

Alexandre was asking there why the results of such amalgamation should be the kinds of entity we encounter through different routes. I should imagine that the answer to this has much in common with answers to the questions Michiel Hazewinkel is posing in Niceness Theorems:

Many things in mathematics seem almost unreasonably nice. This includes objects, counterexamples, proofs. In this preprint I discuss many examples of this phenomenon with emphasis on the ring of polynomials in a countably infinite number of variables in its many incarnations such as the representing object of the Witt vectors, the direct sum of the rings of representations of the symmetric groups, the free lambda ring on one generator, the homology and cohomology of the classifying space BU, … . In addition attention is paid to the phenomenon that solutions to universal problems (adjoint functors) tend to pick up extra structure.

Evidently Hazewinkel sees category theory as the right tool for the problem. So might Fraïssé amalgamation be given a category theoretic gloss? Here are a few attempts.

Trevor Irwin, Fraisse limits and colimits with applications to continua:

The classical Fraïssé construction is a method of taking a direct limit of a family of finite models of a language provided the family fulfills certain amalgamation conditions. The limit is a countable model of the same language which can be characterized by its (injective) homogeneity and universality with respect to the initial family of models. A standard example is the family of finite linear orders for which the Fraïssé limit is the rational numbers with the usual ordering.

We present this classical construction via category theory, and within this context we introduce the dual construction. This respectively constitutes the Fraïssé colimits and limits indicated in the title. We provide several examples.

We then present the projective Fraïssé limit as a special case of the dual construction, and as such it is the categorical dual to the classical (injective) Fraïssé limit. In this dualization we use a notion of model theoretic structure which has a topological ingredient. This results in the countable limit structures being replaced by structures which are zero-dimensional, compact, second countable spaces with the property that the relations are closed and the functions are continuous.

We apply the theory of projective Fraïssé limits to the pseudo-arc by first representing the pseudo-arc as a natural quotient of a projective Fraïssé limit. Using this representation we derive topological properties of the pseudo-arc as consequences of the properties of projective Fraïssé limits. We thereby obtain a new proof of Mioduszewski’s result that the pseudo-arc is surjectively universal among chainable continua, and also a homogeneity theorem for the pseudo-arc which is a strengthening of a result due to Lewis and Smith. We also find a new characterization of the pseudo-arc via the homogeneity property.

We continue with further applications of these methods to a class of continua known as pseudo-solenoids, and achieve analogous results for the universal pseudo-solenoid.

Wieslaw Kubiś, Fraisse sequences – a category-theoretic approach to universal homogeneous structures:

We present a category-theoretic approach to universal homogeneous objects, with applications in the theory of Banach spaces and in set-theoretic topology.

Olivia Caramello, Fraïssé’s construction from a topos-theoretic perspective:

We present a topos-theoretic interpretation of (a categorical generalization of) Fraisse’s construction in model theory, with applications to countably categorical theories.

About these ads

Comments»

1. Aidan A. Kelly, Ph.D (Theology, GTU, 1980) - November 7, 2009

Following up on my comment further down the list:

You guys are obviously serious mathematicians. I can’t claim that. I got shot down by differential equations at UC Berkeley in the fall of 1961; went back to San Francisco State; got my BA and MA in poetry.
After working for five years as an editor for Scientific American Books, I went to the GTU and got my Ph.D. in theology (actually, advanced humanities) exactly on my 40th birthday.

What’s the relation between math, poetry, and theology? I see all three as systems for manipulating abstract symbols in order to generate maps of possible realities. It’s nice to find a website where people might understand what the hell I mean by that.

rightsaidfred - November 10, 2013

Symbol manipulation, yes, but there are different symbols and rules generated.


Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

Follow

Get every new post delivered to your Inbox.

Join 65 other followers

%d bloggers like this: